Цифровая обработка информации



Цифровая обработка - стр. 115


В одномерном случае это прямоугольные, треугольные, B-сплайн функции и т.п. [5.2, разд.4.3]. При выборе соответствующего ядра  исходят из соображений как необходимой точности интерполяции, так и вычислительной эффективности. Понятно, что здесь одномерные функции должны быть преобразованы в двумерные функции. Общий подход состоит во введении так называемых «сепарабельных» интерполяционных функций в виде произведения двух одномерных функций. Сепарабельность во многих отношениях достаточно привлекательна в приложениях хотя и влечет неизотропность (за исключением гауссовых функций). Однако данные на квадратной решетке дискретизованы также не изотропно.

С вычислительной точки зрения предпочтителен алгоритм, известный как интерполятор по ближайшему соседу, где значение в точке

приписывается равным величине ближайшего отсчета дискретного растра. Этот метод соответствует прямоугольному интерполирующему ядру (рис.5.8). Свертка с прямоугольной функцией в пространственной области эквивалентна умножению сигнала в области частот на sinc-функцию. Последняя является плохим приближением к низкочастотному фильтру, поскольку имеет бесконечное множество боковых лепестков. Алгоритм ближайшего соседа приводит к локальным сдвигам относительно первоначального изображения на величины разностей между вычисленной точкой и ближайшей точкой дискретного растра (то есть вплоть до
).  Треугольное ядро (рис.5.9) в двумерном случае приводит к билинейной интерполяции по четырем ближайшим соседям точки
 
 
,
 
.

Рис.5.8. Интерполятор по ближайшему соседу с прямоугольным ядром. Справа график модуля Фурье-образа ядра. Пунктирной линией показан идеальный низкочастотный фильтр с частотой среза

 .

Рис.5.9. Линейная интерполяционная функция и модуль ее Фурье-образа

(на правом рисунке пунктиром отмечен идеальный низкочастотный фильтр)

Здесь интерполированный сигнал представляется в виде

           

,                 (5.21)

где

Приближение к низкочастотному фильтру здесь еще далеко от идеального, и к тому же производная интерполированного сигнала терпит разрывы в узлах интерполяции (тем не менее формула (5.21) часто применяется на практике, поскольку удовлетворяет одновременно требованиям приемлемой точности и приемлемым затратам вычислительных ресурсов).




Содержание  Назад  Вперед