Цифровая обработка информации



Цифровая обработка - стр. 19


Кроме того, сама задача выделения краев только на первый взгляд кажется такой простой. В действительности неизбежное присутствие шумов в изображениях может привести к частичному исчезновению контуров или появлению ложных. Идея поиска сопряженных точек с помощью отождествления краев была особенно популярна у биологов и психологов, исследовавших механизмы зрения [6.11], но, как нам кажется, в таком идеальном виде практического применения не нашла.

Еще один подход к поиску сопряженных точек опирается на предварительный раздельный анализ изображений, позволяющий выделить на них некоторые характерные объекты или особенности. Так на аэроснимках городских территорий можно попытаться выделить перекрестки, отдельные дома или их фрагменты, деревья и т.п., а затем  выполнить их отождествление между снимками.

По-видимому, наиболее удачных результатов можно ожидать от комбинированного использования всех этих методов и применения итеративной схемы, когда по найденным сопряженным точкам строится оценка поверхности, с учетом которой изображения подвергаются   масштабной коррекции и выполняется поиск новых сопряженных точек.

Рис.6.9. Упорядочение сопряженных точек в случае непрерывных поверхностей

 

ВОПРОСЫ К ГЛАВЕ 6

6.1. Какой смысл имеет знак при

 в выражении (6.1)?

6.2. Какой вид примет выражение (6.3), если вектор трансляции будет задан в глобальной системе координат?

6.3. Обратимся к рис. 6.3. Какой вид будут иметь матрицы

,
,
 и вектор
 в выражении (6.9) для ситуации, приведенной на рисунке?

6.4. Пусть в ситуации, изображенной на рис. 6.3, векторы 

 и
 внутренних координат проекций точки
 в плоскостях изображений левой и правой камер известны. Получите оценки трехмерных координат точки
 в системах координат правой и левой камер, пользуясь выражениями (6.11) и (6.12). Сравните полученный результат с (6.6) и (6.7). Объясните отличия.

6.5. Почему в предыдущем вопросе векторы 

 и
 имеют одинаковые
- компоненты?

6.6. Докажите справедливость соотношений (6.17).




Содержание  Назад  Вперед