Цифровая обработка информации



Цифровая обработка - стр. 61


Его выполнение требует знания спектральных плотностей мощности и опирается на применение к обрабатываемому изображению дискретного преобразования Фурье.

          Не следует, однако, забывать, что переход от уравнения (3.31), определяющего истинно оптимальную характеристику фильтра, к уравнению (3.32), позволяющему найти ее периодически продолженный аналог, был выполнен без достаточного обоснования. Поэтому ничего нельзя пока сказать о том, в какой степени найденное решение близко к истинно оптимальному. Для ответа на этот вопрос рассмотрим снова для простоты одномерные аналоги уравнений (3.31) и (3.32), имеющие вид:

                                (3.35)

                                   (3.36)

Рис. 3.6 иллюстрирует формирование сумм, входящих в правые части этих равенств при некотором произвольном значении сдвига 

 и достаточно большом значении интервала наблюдения 
. Здесь показаны некаузальная ИХ  и корреляционная функция входного сигнала, а штриховкой условно отмечена область суммирования. Из сравнения рис. 3.6.а, соответствующего (3.35), и рис. 3.6.б, соответствующего (3.36), видно, что, хотя во втором случае область суммирования и является двухсвязной, это не приводит к различию результатов

а)

б)

Рис. 3.6. Сравнение обычного и циклического уравнений Винера-Хопфа

суммирования. При большом значении длины интервала

 соседние зоны на рис. 3.6.б не перекрываются, благодаря чему искажения результатов не происходит. Следовательно, уравнения (3.35) и (3.36) являются эквивалентными.

          Если же интервал

 будет соизмерим с размахом корреляционной функции 
, то произойдет наложение соседних областей периодической картины, что в итоге приведет к изменению значений функций, стоящих под знаком суммы в (3.36), и исказит уравнение Винера-Хопфа. Таким образом, условие применимости фильтра Винера, определяемого соотношением (3.34), состоит в его использовании для обработки изображений, имеющих достаточно большие размеры.


Содержание  Назад  Вперед