Цифровая обработка информации



Цифровая обработка - стр. 62


Напомним также, что в данном пособии обсуждается уравнение Винера-Хопфа для стационарных сигналов и изображений. Поэтому вблизи границ обрабатываемого кадра, где само их существование приводит к нарушению этого условия, обработка отклоняется от оптимальной.

          На рис. 3.7 приведен пример работы фильтра Винера. Как и ранее эксперимент выполнен при отношении сигнал/шум

. Относительный средний квадрат ошибок фильтрации
 составляет в этом эксперименте величину 0,167, что является наилучшим показателем среди всех рассмотренных методов линейной фильтрации (напомним, что при масочной фильтрации выше было получено
, а при рекуррентной
). О наименьшем уровне остаточного шума на изображении говорит и визуальная

оценка результата. Хотя нельзя не отметить, что это достигается ценой большей, чем при других методах, дефокусировки изображения. В этом проявляется общее диалектическое противоречие между борьбой с помехами и

а)

б)

Рис. 3.7. Пример винеровской фильтрации шума при

динамическими искажениями обрабатываемого изображения, свойственное, как отмечалось и ранее, всем методам фильтрации.

          Проведение обработки изображений при помощи фильтра Винера требует использования спектральной плотности мощности изображения. Существуют различные способы получения необходимой информации. Один из них основан на предварительном измерении требуемых характеристик по реальному изображению. Полученные при этом спектральные плотности вводятся в ЭВМ в виде таблиц, позволяя задать коэффициент передачи в численном виде. Другой способ, примененный и в представленном эксперименте, состоит в использовании некоторой математической модели изображения, вид спектрально-корреляционных характеристик которой известен. В этом случае реальное изображение используется для измерения только отдельных параметров, входящих в используемую математическую модель. При проведении эксперимента, описанного выше , в частности, использовалась модель изображения в виде гауссовского двумерного поля с корреляционной функцией (3.17), а измерялись коэффициент одношаговой корреляции 

 и дисперсия
.




Содержание  Назад  Вперед