Цифровая обработка информации



Цифровая обработка - стр. 76


/p>

          Рис. 3.11.д показывает изображение, искаженное независимым гауссовским шумом при отношении сигнал/шум

дБ, а рис. 3.11.е - результат его фильтрации медианным фильтром. Условия данного эксперимента позволяют сравнивать его результаты с результатами рассмотренной выше линейной фильтрации. В таблице 3.1 приведены данные, дающие возможность такого сравнения. Для различных методов фильтрации в этой таблице приводятся значения относительного среднего квадрата ошибок
 и коэффициента ослабления шума
 для случая, когда отношение сигнал/шум на входе фильтра составляет  -5 дБ.

масочный фильтр с оптимальн. КИХ

масочный фильтр с равномерн. КИХ

двумерный рекуррентн. фильтр

двумерный фильтр Винера

медианный фильтр

0.309

0.395

0.29

0.186

0.539

10.2

8.0

10.9

17.0

5.86

Табл.3.1. Сравнение эффективности подавления шума при фильтрации изображений,

 дБ

Наибольшей эффективностью обладает двумерный фильтр Винера, уменьшающий средний квадрат ошибок в 17 раз. Медианный фильтр имеет наименьшую из всех рассмотренных фильтров эффективность, ему соответствует

=5.86. Тем не менее, это число свидетельствует о том, что и при его помощи удается значительно снизить уровень шума на изображении.

Вместе с тем, как говорилось выше, и что демонстрирует рис. 3.11.е, медианная фильтрация в меньшей степени сглаживает границы изображения, чем любая линейная фильтрация. Механизм этого явления очень прост и заключается в следующем. Предположим, что апертура фильтра находится вблизи границы, разделяющей светлый и темный участки изображения, при этом ее центр располагается в области темного участка. Тогда, вероятнее всего, рабочая выборка будет содержать большее количество элементов с малыми значениями яркости, и, следовательно, медиана будет находиться среди тех элементов рабочей выборки, которые соответствуют этой области изображения. Ситуация меняется на противоположную, если центр апертуры смещен в область более высокой яркости.


Содержание  Назад  Вперед