Цифровая обработка информации



Цифровая обработка - стр. 80


Поэтому даже если регистрируемый объект имеет бесконечные размеры наблюдаемое изображение формируется лишь только за счет некоторой его части. Причем размеры кадра наблюдаемого изображения всегда меньше или равны размерам исходного. Размеры  кадров исходного и наблюдаемого изображений равны лишь при отсутствии линейных искажений, т.е. когда импульсная характеристика искажающей системы равна дельта-функции. Нас будет интересовать восстановление изображения в пределах кадра
.  В некоторых случаях удается восстановить изображение в пределах кадра
 исходного изображения, т.к.  та его часть,  которая лежит вне пределов кадра
, также оказывает влияние на наблюдаемое изображение
.

Для изображений, представленных в цифровой форме, двумерные функции

,
,
,
 и
 с непрерывными аргументами в (4.1) заменяются двумерными массивами отсчетов, взятых на прямоугольных решетках с одинаковыми расстояниями
 между узлами. В этом случае соотношение (4.1) принимает вид:

,  
     (4.3)

где

.      (4.4)

Аргументы с индексом 1 обозначают номер строки, а с индексом 2 - номер столбца. В дискретном случае размеры кадра (число отсчетов)

 и
 определяются отношением длин соответственно вертикальной  и горизонтальной сторон кадра аналогового изображения к величине интервала дискретизации
.

Операция свертки, которая имеется в формулах (4.1) и (4.4), эквивалентна произведению в частотной области. Это позволяет выполнить быструю имитацию линейных искажений с помощью ДПФ, заменив обычную свертку циклической (смотри главу 3). Как правило, размеры  кадра ФРТ много меньше размеров кадра исходного изображения, поэтому перед преобразованием массив

 должен быть дополнен нулями. Кроме того, полагается, что изображения и ФРТ являются периодически продолженными, которые так же как и в главе 3 обозначаются волнистой линией.

Спектр линейно-искаженного изображения

 равен произведению спектра
 исходного изображения
 и передаточной функции
 искажающей системы:

,                              (4.5)




Содержание  Назад  Вперед