Цифровая обработка информации



Цифровая обработка - стр. 97


В итерационном алгоритме (4.37) нахождение обратного оператора заменяется на многократное вычисление свертки.

При использовании итерационных  алгоритмов необходимо знать ответы на два вопроса - сходится ли он  и, если сходится, то к какому решению. Сходимость алгоритма (4.37) к решению (4.33) определяется сходимостью ряда бесконечной геометрической прогрессии (4.34). Этот ряд сходится при

, т.е. когда передаточная функция искажающей системы удовлетворяет условию

 .                                           (4.38)

Условие (4.38) выполняется для гауссовской ФРТ.  При цилиндрической ФРТ и равномерном смазе соотношение (4.33) заменяют на эквивалентное соотношение

.

Тогда итерационный алгоритм  (4.37) имеет вид [4.6]

(4.39)

где

 и
 - импульсные характеристики фильтров с передаточными функциями 
 и 
 соответственно. Свертка в (4.37) и (4.39) может быть выполнена с помощь БПФ в предположении, что изображения и импульсные характеристики являются периодически продолженными.

          Очевидно, что рассмотренный итерационный алгоритм является линейным и не имеет никаких преимуществ по сравнению с линейными алгоритмами. Однако этот метод позволяет эффективно бороться с краевыми эффектами и чрезмерным усилением шумов при восстановлении изображений. Итеративный процесс всегда можно остановить, если шум  и осциллирующая помеха на изображении резко усиливаются. Остановка итеративного процесса означает усечение ряда (4.34), что приводит к ограничению коэффициента усиления за пределами некоторой граничной частоты. С увеличением длины ряда возрастают граничная частота и коэффициент усиления фильтра. Этот эффект иллюстрируется рис. 4.28, где приведены одномерные сечения частотных характеристик фильтров при 10-ти и 15-ти слагаемых в ряде (4.34) (сплошные линии). Здесь же для сравнения приведено одномерное сечение частотной характеристики инверсного фильтра (штриховая линия).

Рис. 4.28. Частотные характеристики итерационного фильтра на разных шагах




Содержание  Назад  Вперед